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We present an adaptive similarity-based approach to detect generalized synchronization �GS� with n :m
phase synchronization �PS�, where n and m are integers and one of them is 1. This approach is based on the
similarity index �SI� and Gaussian mixture model with the minimum description length criterion. The cluster-
ing method, which is shown to be superior to the closeness and connectivity of a continuous function, is
employed in this study to detect the existence of GS with n :m PS. We conducted a computer simulation and
a finger-lifting experiment to illustrate the effectiveness of the proposed method. In the simulation of a
Rössler-Lorenz system, our method outperformed the conventional SI, and GS with 2:1 PS within the coupled
system was found. In the experiment of self-paced finger-lifting movement, cortico-muscular GS with 1:2 and
1:3 PS was found between the surface electromyogram signals on the first dorsal interossei muscle and the
magnetoencephalographic data in the motor area. The GS with n :m PS �n or m=1� has been simultaneously
resolved from both simulation and experiment. The proposed approach thereby provides a promising means for
advancing research into both nonlinear dynamics and brain science.
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I. INTRODUCTION

The core problems of synchronization in brain science are
how to sensitively detect the interdependence among dy-
namical variables within each coupled chaotic biological sys-
tem and what kinds of functional connectivity are across spe-
cialized brain regions. Conventional linear methods based on
the cross-correlation and coherence function are limited to
the detection of linear features of biological signals, and,
thereby, many works have been instigated to develop tools
for resolving the nonlinear interdependence. In the literature,
two types of nonlinear interdependence, including phase syn-
chronization �PS� and generalized synchronization �GS�,
have been recognized as key nonlinear features of functional
connectivity in brain science �1–12�. It was proposed that GS
always leads to PS, but not vice versa. To our knowledge, the
coexistence of GS and 1:m PS �m�1� for data analysis has
been less explored in the literature, even though these two
types of synchronization had been, respectively, discussed in
different fields. It is of potential importance to develop a
general method to detect the coexistence of these two types

of synchronization in a coupled system, especially in biologi-
cal systems.

The PS in a coupled chaotic system means that the phases
between systems are locked whether their amplitudes are
correlated or not. That is, the phases of one system can be
predicted by the phases of the other. Many methods have
been developed to extract the phases of univariate and mul-
tivariate time series. In the case of a univariate time series
associated with a principal frequency, one can decompose
the time series into instantaneous phase and amplitude se-
quences by means of convolution with a Gabor wavelet cen-
tered at a frequency or Hilbert transformation. Based on
these two respective transformations, n :m PS could be de-
tected by the methods of phase-locking statistics �11� and
Shannon entropy �12�, correspondingly. In 2001, Le Van
Quyen et al. �13� further concluded that the results obtained
from these two methods are fundamentally equivalent for the
study of neuroelectrical signals. In the case of a multivariate
time series with clear rotations on the phase portrait
projection—e.g., Rössler system—a phase increase of 2�
can be associated with a successive crossing with an appro-
priate secant surface. The phases in between can therefore be
computed with a linear interpolation �14�. For these methods
of phase extraction, the former determines phases in the tem-
poral domain, the latter in the spatial domain. By the trans-
formation of a time-delayed phase reconstruction �15�, the
univariate time series can be transformed to a multivariate
one. Takens �15� and Saur et al. �16� theoretically proved
that there exists a diffeomorphism between its underlying
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true trajectories and its time-delayed reconstructed multivari-
ate one. The phases in the reconstructed multivariate case
can be possibly equivalent to those in the univariate one. It
should be noted that the PS in most experiments was de-
tected not in the spatial domain, but in the temporal domain.
The development of a general method for detecting PS in the
spatial domain should be further investigated.

In a coupled chaotic system, the dynamics will collapse
onto an attractor of the full phase space when GS occurs
�17�. It implies the existence of a certain functional relation-
ship between these subsystems. Under the circumstance of a
continuous function between the attractors of two sub-
systems, the contemporary points in the other subsystem will
be close to each other when the points in the phase space of
one subsystem approximate each other. In general, two time
series with a functional relationship do not necessarily con-
note resemblance between each other. Previous studies
�18–20� used the average translation of mutual neighbors as
a predictor of the driver system to describe the interaction
between a driver-response system. Arnhold et al. �21� pro-
posed the similarity index �SI� to investigate the nonlinear
interdependence for the intracranially recorded electroen-
cephalograms of epileptic patients. Stam et al. �1� proposed
the synchronization likelihood, which could exclude the bias
pointed out by Pereda et al. �22�, for early Alzheimer disease
to infer the clinical mechanisms. These three studies were
based on the existence of the closeness and connectivity in a
spatial domain. It is worthy to note that the closeness and
connectivity are necessary for the continuous function in a
Euclidean space and are candidates to reveal the underlying
relationship between the two time series. However, the map-
ping between two chaotic attractors is in general unknown,
which makes the closeness and connectivity difficult to be
satisfied.

The present study utilizes the clustering technique to de-
tect GS with 1:m PS �m�1�, which was not mentioned in
�21,23,24�. Specifically, the mapping between two chaotic
attractors is characterized by clusters, instead of the close-
ness and connectivity of a continuous function. Notably, in
this case, the clustering nature in a spatial domain in place of
the conventional phase difference in a temporal domain was
dynamically detected by the Gaussain mixture model with
the minimum description length �MDL� criterion. This is dif-
ferent from the classical methods mentioned in the previous
paragraphs. This paper is organized as follows. Section II
introduces the adaptive similarity-based index and Gaussian
mixture model with the MDL criterion. Section III analyzes
the simulation data from a Rössler-Lorenz system and the
physiological signals from 2-Hz cued self-paced finger
movements. Section IV discusses the clustering characteris-
tic in the spatial domain. Section V concludes this study.

II. ADAPTIVE SIMILARITY-BASED APPROACH

Let xn be a scalar time series. By the time-delay procedure
�15,16�, we can construct a dx-dimensional vector xn with
coordinates �xn , . . . ,xn+�dx−1���. Herein, the delay time �x is
chosen by the first minimum of mutual information �25� and
the embedding dimension dx is determined by computing the

ratio of false nearest neighbors �26�. A reconstructed trajec-
tory X denotes the collection of the points, x1

T ,x2
T , . . ., where

T denotes transpose. For different time series, we can com-
pute the values of the corresponding items and define their
symbols by the same process.

Let �n
k ��n

k� denote the collection of time indices of the
k nearest neighbors �KNN� of xn �yn�, where �n

k = ���n,j�j
=1, . . . ,k� ��n

k = ��	n,j�j=1, . . . ,k��. The KNN of xn are called
actual neighbors. Let x��n

k� denote the set of points by
��x	n,j

�j=1, . . . ,k� and be called mutual neighbors. Corre-
spondingly, the sets y��n

k� and y��n
k� are actual neighbors

and mutual neighbors, respectively. The index of the actual
�mutual� neighbors is called the driver �response� index. For
every xn�Rdx, we define the mean Euclidean distance for
the set of xn and its actual neighbors as Vn

�k��X�= 1
k �i=1

k 	x�n
−x�n,i

	2. Assume that the mutual neighbors x��n
k� can be

modeled by the Gaussian mixture model �GMM� as follows:

p„�
��,x��n
k�… = �

i=1

m

�ipi��
�i,�i� = �
i=1

m
�i


�2��dx�det �i�

�exp�− 1

2
�
 − i�T�i

−1�
 − i�� , �1�

where 
 is a random variable in Rdx, �
= ��1 , . . . ,�m ,1 , . . . ,m ,�1 , . . . ,�m� and �i=1

m �i=1. Each
probability pi is a Gaussian distribution with mean vector i
and covariance matrix �i to represent a cluster. We apply the
electromagnetic expectation-maximization algorithm �27� to
estimate the parameter � and assign each datum in x��n

k� to
one of the m clusters based on the maximum posterior prob-
ability. The optimal value m� of m is determined by the in-
formation criterion of MDL �28–30�:

m� = arg min
m
− ln�

n=1

k

�
i=1

m

�ip��xn���� + �J ln�k�� ,

�2�

Here, the first term on the right-hand side of Eq. �2� is the
maximum log-likelihood of Eq. �1� with parameters �, all
random variables xi are identical and independent distribu-
tions, J= �d2+3d+2�m /2−1 (i.e., d�m ��d+1�dm /2, m−1�
parameters of i ��i, �i�) is the number of free parameters in
the model, and � �=1 /2� is a scalar factor. Therefore, the
collection �n

k can be partitioned into m pairwise disjoint col-
lections �n

ki = ��	n,j
ki �j=1, . . . ,Ni�, i=1, . . . ,m, where Ni is the

number of points in x��n
ki� and all points in x��n

ki� belong to
the same cluster. The conditional and clustered mean Euclid-
ean distance is defined by

Vn
�m,k���X�Y� = maxi=2,. . .,m 1

k1
�
j=1

k1

	x	n
− x	

n,j
k1 	2,

2

Ni�Ni − 1�

� �
�j1,j2���n

ki

	x	
n,j1

ki − x	
n,j2

ki 	2� ,

where j1� j2 and 	 · 	 is a Euclidean distance. The local and
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global interdependences Sn
�m,k���X�Y� and S�m,k���X�Y� are de-

fined as

Sn
�m,k���X�Y� = min Vn

�k��X�
Vn

�m,k���X�Y�
,1� �3�

and

S�m,k���X�Y� =
1

N
�
n=1

N

Sn
�m,k���X�Y� , �4�

respectively. The quantity Sn
�m,k���X�Y� �S�m,k���X�Y�� means

the local �global� variation rate of the mean distance influ-
enced by Y and is called the locally [globally] adaptive

similarity-based index �ASI�. Notably, the proposed method
�i.e., ASI� is the same as the traditional method �i.e., SI�
proposed by Arnhold et al. �21� as m=1.

To avoid spurious detection of synchronization due to
short data, noise, bandpass filtering, and signal complexity
�22,31�, we developed a two-level process of computing the
ASI in order to get a more significant representative. First,
we consider the univariate significant level of the globally
ASI between X and Y as Suni

�m,k���X�Y� : =max�S�m,k���X�Y�
− S̃�m,k���X�Y� ,0�, where S̃�m,k���X�Y� is the 95th percentile of
the distribution for 19 univariate surrogates of Y �22�, gen-
erated by the iterative-amplitude-adjusted Fourier transform
�IAAFT� algorithm �32�. Second, the bivariate significant level
of the globally ASI is defined by

Sbi
�m,k���X�Y�: = max�S�m,k���X�Y� − Ŝ�m,k���X�Y�,0� , if Suni

�m,k���X�Y� � 0,

0, if Suni
�m,k���X�Y� � 0,

� �5�

where Ŝ�m,k���X�Y� is the 95th percentile of the distribution
for 19 bivariate surrogates �22�, generated by the IAAFT al-
gorithm. The whole process of the adaptive similarity-based
approach is presented in the Appendix.

III. EXPERIMENTS

In order to demonstrate the capability of Eq. �5�, we con-
ducted one simulation and one real experiment to show that
the proposed method can detect not only GS, but also 1:m or
n :1 PS effectively.

A. Simulation

1. Model description

Consider a unidirectionally coupled chaotic system, pro-
posed by Le Van Quyen et al. �20�:

ẋ1 = − ��x2 + x3� ,

ẋ2 = ��x1 + 0.2x2� ,

ẋ3 = ��0.2 + x3�x1 − 5.7�� ,

ẏ1 = − ��y1 − y2� ,

ẏ2 = ry1 − y2 − y1y3 + cx2
2,

ẏ3 = y1y2 − by3, �6�

where �=10, r=28, and b=8 /3. The term cx2
2 can be thought

of as a perturbation item. When c=0, this coupled system
can be viewed as two independent systems, where the state
variables �x1 ,x2 ,x3� and �y1 ,y2 ,y3� represent the celebrated

Rössler and Lorenz systems, respectively. The parameter �
�=10� is used to adjust the time scale of the Rössler system.
In the study, the 200-s data were simulated by using fourth-
and fifth-order Runge-Kutta algorithms with �t=0.002 for
the system �6� with c=10. Note that N=105 �200�s� /�t� in
Eq. �4�. In order to eliminate transients, the first 106 itera-
tions were discarded. The globally ASI in Eq. �5� was ap-
plied to quantify the interdependence between two time se-
ries xn �=x1�tn�� and yn �=y1�tn�� in the simulation data,
where tn denotes the nth sampling time and n�N. We suit-
ably chose the 200 nearest neighbors x��n

200� �y��n
200�� for

every reconstructed vector xn �yn� of xn �yn� with the delay
time �x=70 ��y =38� and the embedding dimension dx=3
�dy =3� as described in Fig. 1. Herein, we only consider the
variation rate of the mean distance of X influenced by Y
because the same procedure can be utilized to discuss the
opposite direction.

2. Results

Based on the driver indices in �n
200 for some n in Fig.

1�a�, the mutual neighbors x��n
200� in Fig. 1�b� can be di-

vided into two clusters. To elucidate the cause of clusters, we
analyzed the temporal structure of the driver indices in �n

200

by the time difference �TD�. Herein, the TD between succes-
sive indices 	i and 	i+1 in �n

200 is defined by �	i= �	i+1

−	i��t. We drop the TD equal to �t because it indicates that
two points are very close in the temporal domain. By esti-
mating the differences among the TDs of the driver indices
in �n

200, we found that these TDs locate nearby a lattice as in
Fig. 2, where the vertical distance between the successive
grid lines is about 0.2927. Similarly, the TDs based on the
response indices in �n

200 are displayed in Fig. 2. The TDs for
the collections �n

200 ��n
200� are obviously a multiple of 0.2927

�0.5855�. Consequently, it is reasonable that, from the tem-
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poral view, mutual neighbors x��n
200� are divided into two

groups from the distributions of TDs for �n
200 and �n

200 in
Fig. 2.

We analyzed the interdependence between x1�t� and y1�t�
of the coupled system �6� with different values of the param-
eter c� �0,10� and show the results of the globally ASI and
SI in Fig. 3�a�. In Fig. 3�a�, ASIs are all larger than SIs as
c�2.5. It means that there exist some separable mutual
neighbors. More specifically, we gave an example of the
Rössler-Lorenz system with c=10 in Fig. 3�b�, which
showed the successive five time slots of mutual neighbors
x��•

200� in the reconstructed phase space. In these five fig-
ures, it is obvious that the black points were split from one
group �i.e., A in Fig. 3�b1�� into two groups �i.e., A and B in
Fig. 3�b2��, and later merged into one group �i.e., A in Fig.
3�b5�� again. After mutual neighbors x��•

200� were modeled
by the GMM with different numbers of groups, the optimal

number of clusters determined by the MDL criterion was the
same as the number of clusters in this simulated system.
Consequently, for more complex synchronization, our
method detected more features than the traditional one �21�.

B. Self-paced finger movement

The aim of the real experiment is to detect the GS with
1:m PS between physiological signals by Eq. �5�. The ex-
periment design as follows is similar to that described in Tass
et al. �7�. The contralateral primary sensorimotor cortex gen-
erally plays a role in the major corticospinal outflow during
volunteer movements. Considering the human brain as a dy-
namical system with frequent changes of its functional mode,
the task of self-paced finger movement can be proper to in-
vestigate the cortico-muscular representations within varied
experimental designs.

1. Subjects and task

Four healthy, right-handed and well-trained subjects
�whose ages ranged from 24 to 32 years old� were recruited
for this experiment. All of them denied any neurological
deficits and appeared naive with regard to the purpose of the
experiment. They sat comfortably in a magnetically shielded
room with open eyes. All participants were requested to per-
form repeated self-paced movement of the right index finger
�35°–40° extension angles� at a time interval of 100 s with
two tappings per 1 s in synchrony with a regular auditory
pacing signal administered at 2 Hz �external pacing�. Mag-
netic responses were measured by a 306-channel whole-head
neuromangetrometer �Vector-view; Neuromag Ltd., Helsinki,
Finland�. We recorded the activity of the first dorsal in-

(a)

(b)

(c)

FIG. 1. �a� The reconstructed trajectory Y of a time series y1�tn�
with �y1

=38 and dy1
=3 is projected on a two-dimensional phase

space. �b�, �c� The reconstructed trajectory X of a time series x1�tn�
with �x1

=70 and dx1
=3 is projected on a two-dimensional phase

space. The 200 actual neighbors y��n
200� �x��n

200�� in �a� ��c�� are
shown. The two-group black points in �b� represent the mutual
neighbors x��n

200�. Herein, c=10.

200 40 60 80 100 120 140 160 180 200

0.5855
1.171
1.7565
2.342
2.9275
3.513
4.0985
4.684
5.2695
5.855
6.4405
7.026
7.6115
8.197
8.7825
9.368
9.9535
10.539

Time (s)

Ti
m
e
D
iff
er
en
ce
(s
)

Ωn200

n200Γ

FIG. 2. Illustration of the TDs for the driver indices �n
200 and

response indices �n
200 of the unidirectionally coupled system �6�.

Two kinds of horizontal lines, solid and dashed lines, are presented.
The star �circle� points represent the TDs between the successive
time points in KNN for the reconstructed trajectories X �Y� in Fig.
1�c� �Fig. 1�a��, respectively. The star points only locate nearby the
solid line. The circle points locate nearby these two kinds of lines.
The minimum of TDs between the solid line and dashed one is
0.29275. Points nearby zero will be dropped due to the closeness of
these points in their reconstructed phase spaces.
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terossei muscle of the right hand using a surface electromyo-
gram �sEMG�. The 30-s MEG and sEMG signals were si-
multaneously recorded with a bandpass filter of 0.03–330
Hz, digitized with 1 kHz, and stored digitally for off-line
analysis. To avoid contamination related to movement vibra-
tions during the MEG recordings, the subjects were asked to
put their left forearms on a pillow at ease. To avoid the
artifacts caused by eye movements, they also were requested
to keep their eyes open and concentrate their focus on the
fixed point in front of them. Here, we only describe the re-
sults of one subject due to the resemblance of the results for
the remaining three subjects.

2. Results

The interdependence between the sEMG and one-task-
related MEG �trMEG� signals was computed by Eq. �5�,
which only discussed the variation rate of the mean distance
for the sEMG signal influenced by the trMEG signal. The
power spectral analysis for the sEMG signal revealed a peak
at 2 Hz. Hence, the sEMG signal was filtered with a narrow-
band frequency corresponding to the principal sEMG fre-
quency component of 2 Hz. The MEG signals recorded from
gradiometer 1 at the 13th detector unit were chosen due to its

neighboring the task-related cortical regions. To show GS
with 1:2 PS, the trMEG signals were filtered with a bandpass
extracting the 4-Hz band. The reconstructed trajectory of the
filtered sEMG �trMEG� signal was constructed both with the
time delay �sEMG=120 ��trMEG=60� ms and with the embed-
ding dimension dsEMG=10 �dtrMEG=10�. The 200 nearest
neighbors were chosen for these two reconstructed trajecto-
ries. Applying Eq. �5� to the reconstructed trajectories of the
two filtered signals, we get the locally ASI in Fig. 4�a�. The
1:2 phase difference between trMEG and sEMG signals was
computed and the results are shown in Fig. 4�b�. Herein, the
phase difference is defined by 2�sEMG−�trMEG where �sEMG
��trMEG�, the phase of the sEMG �trMEG�, is extracted by
Hilbert transformation. Comparing Figs. 4�a� and 4�c� with
Fig. 4�b�, the locally ASI appeared obviously more sensitive
in detecting 1:2 PS than the conventional SI.

We elucidated the positions of actual and mutual neigh-
bors at some time point in different ways. The 200 actual
neighbors �mutual neighbors� are plotted in the two-
dimensional projection of the reconstructed trajectory for the
filtered sEMG signals in Fig. 5�a� �Fig. 5�b�� and are also
represented in the corresponding time domain in Fig. 5�c�
�Fig. 5�d��. The 200 actual neighbors for the filtered trMEG

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

c

In
de
x

ASI

SI

B

A (3)A (1)

B

A
(4)A

B

(2)

A

(5)

(a)

(b)

FIG. 3. �a� Description of the interdependence between time series x1�t� and y1�t� of the coupled system �6� by the measurement �5�
�conventional SI� whose result is shown by the solid �dashed� line for c� �0,10�. �b� Let c=10. We showed the diagram of the dynamics of
the mutual neighbors x��•

200� at five different sample times in the reconstructed Rössler system. Herein, the symbol • means a different point
n �i.e., xn�. The time of the from left to right in order is, respectively, from the early stage to the late one. The mutual neighbors x��n

200� in
the circle A were split into two pieces A and B, later merged into one piece A.
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are additionally shown in Fig. 5�e�. To describe the relative
positions between the actual and mutual neighbors, seven
dashed lines are used to mark the positions between black
points in Figs. 5�d� and 5�e�. From visual inspection of Fig.

5�d� �Fig. 5�e�, the phase difference of the successive black
points is almost � /2 ���. It is reasonable to have the two
groups in Fig. 5�b� when we switch to the reconstructed
phase space.

For other different MEG signals, the same strategy was
applied to analyze the interdependence between the sEMG
and individual MEG signals. It follows from the resulting
brain topography in Fig. 6�a� that the signals located nearby
sensorimotor cortex or premotor areas are highly synchro-
nous to the sEMG signal. Even though the MEG signals
were filtered with a bandpass extracting the 6-Hz band, Fig.
6�b� illustrates that GS with 1:3 PS exists between the task-
related areas and the first dorsal interossei muscles of the

5 10 15 20 25 30
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2π

Ph
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e
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ce (a)

(b)

(c)

SI

Time (s)

Time (s)

Time (s)

5 10 15 20 25 30
0

0.45
A
SI

5 10 15 20 25 30
0

0.45

FIG. 4. �a� The locally ASI between the sEMG and trMEG is
plotted during the 30-s period. All values in different times had

subtracted Ŝm,k��sEMG�trMEG�. �b� We show the 1:2 phase differ-
ence between the sEMG and trMEG signals. �c� The conventional
SI between sEMG and trMEG signals was computed without the
GMM with MDL criterion.

(a) (b)
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Filtered trMEG

FIG. 5. The 200 actual �mutual� neighbors in �a� ��b�� are plot-
ted in the two-dimensional projected and reconstructed trajectory of
the filtered sEMG signal. For �c� and �d� ��e��, the sEMG signal �the
trMEG signal from gradiometer 1 of the 13th detector unit� is fil-
tered with a bandpass extracting the 2-Hz �4-Hz� narrow band. The
actual �mutual� neighbors in �a� ��b�� represent the black points in
�c� ��d��. The black points in �e� represent the actual neighbors of
the trMEG signal.
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FIG. 6. The sEMG signal used as a response �or reference�
system, the 102 globally ASIs between the filtered sEMG and MEG
signals are shown in the topography as �a� and �b�. Here, the sEMG
�trMEG� signal is filtered with a bandpass extracting the 2-Hz band
�the 4 or 6 Hz�. �a� and �b� show the 1:2 and 1:3 PS between the
trMEG and sEMG signals, respectively. In �c�, the number of de-
tector units corresponds to its position. We found that hot areas are
nearby the motor area.

CHEN et al. PHYSICAL REVIEW E 76, 066208 �2007�

066208-6



right hand. In Fig. 6�c�, the sensor numbers relative to hot
areas are circled. These sensors are closest to the motor cor-
tex in this sensor array. The results show that Eq. �5� was
able to detect GS with 1:m PS between physiological signals
for the task.

IV. DISCUSSION

The proposed method relies on the existence of GS as
follows:

y�n� = F„x�n�… , �7�

where F is a continuous function �17�. Here, we discuss a
two-to-one continuous function F especially. If actual neigh-
bors of y�n� have time indices nKNN, the mutual neighbors
x�nKNN� can be represented by the union of two sets x�nKNN� �
and x�nKNN� �, where nKNN=nKNN� �nKNN� . The separable mu-
tual neighbors can be viewed as two clusters. In this case, the
closeness and connectivity of a continuous function is un-
suitable to explain the separable neighbors. To detect the
synchronization, influenced by y, the clustering characteristic
is superior to the closeness and connectivity of a continuous
function in �17�. Even though a continuous function is one to
one, the inseparable mutual neighbors are viewed as one
cluster. Consequently, the clustering feature can describe
more about synchronization than the feature of closeness and
connectivity.

The occurrence of GS in a unidirectional coupled system
can be detected by the negativeness of the maximum condi-
tional Lyapunov exponent �CLE� �33�. This can be applied
for the unidirectional coupled deterministic system �6� and
infeasible for experimental data from self-paced finger
movement. For the coupled system �6�, the onset c=2.92 of
GS is confirmed in Fig. 7. Additionally, the occurrence of
strong synchronization �SS� �i.e., the existence of a smooth
map� based on the criterion from Pyragas �34� is at c�10,
where the Kaplan-Yorke dimension �KD� �35� is almost con-
stant in Fig. 7. At 2.92�c�10, this functional relation be-
tween the driver and response system, therefore, is weak syn-
chronization �WS� �i.e., the existence of an unsmooth map�

and maybe has a fractal structure. The computation, there-
fore, provides the existence of GS of the coupled system �6�
including SS and WS. This is discussed on their original
manifolds. For the reconstructed state space, by Takens’ em-
bedding theorem �15�, there exists diffeomorphism between
an original manifold and its reconstructed one based on the
time-delayed reconstruction if the dynamical system and the
observed quantity are generic. Let Xd �Xr� be a diffeomor-
phism from an original manifold to the reconstructed one for
the driver �response� system. If a relation between two re-
constructed manifolds for the driver and response system can

be modeled by a function F, then a relation F̄ between the
original manifolds for the two subsystems can be written by

the function F̄=Xr
−1 �F �Xd. Hence, the functional relation-

ship between the original manifolds of two coupled sub-
systems can be equivalent to one between their reconstructed
manifolds. Furthermore, the onset of GS on the original
manifolds can be consistent with the positiveness of the ASI
and SI on the reconstructed state space as c�2.92 in Fig.
3�a�. Therefore, we indirectly show the reliability of detect-
ing GS including SS and WS by the ASI and SI.
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FIG. 8. �Color online� Illustration of the frequency of the time
series y1�ti� for different parameters c, a perturbation parameter in
Eq. �6�. The time scale parameter � is 10. Normalized frequency
power spectrum utilizing fast Fourier transform and Hamming win-
dow was applied to time series y1�ti� simulated for different param-
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We should make it clear about the similarity of two seg-
mented time series in a time series when two points are close
in its reconstructed state space. Let a point xn in the recon-
structed state space give as the previous definition and be
written as �xn , . . . ,xn+�dx−1���. Under the ideal situation, the
segmented time series in between the n and n+ �dx−1��
sample times can be completely denoted by the dx samples.
Let x̃�B��xn�, where x̃= �x̃1 , . . . , x̃dx

� and B��xn�= ��x
�Rdx�	x−xn	2=��. When �=0, we assume that the two seg-
mented time series in a time series have the same wave form
for any two ponits inB0xn. When 0���0, we assume that
the two segmented time series in the time series are very
similar for any two points in B��xn�. Hence, when the mutual
neighbors in the response system are very close, we infer that
their shapes are very similar to each other. On the contrary,
the similar shapes in a time series represent the fact that the
points in the reconstructed phase space will be close to each
other under a suitable parameter, delay time, and embedding
dimension. The two close points in the reconstructed phase
space are, therefore, equivalent to the similar shapes in the
time domain.

For the coupled system �6�, a frequency-locked phenom-
enon will be described. The time series x1�ti� has a natural
frequency of about 1.7087 in the coupled system �6�. For the
time series y1�ti�, there are obviously frequencies 1.7084 and
3.4167. In Fig. 8, at the parameter 2.92�c�5, the principal
frequency of the time series y1�ti� is the same as the nature
frequency of x1�ti�. As the parameter c�5, the principal fre-
quency ��3.4167� of the Lorenz system is twice than the one
��1.7084� of the Rössler system. By the frequency analysis,
the frequency of the response system is dominated by the
one of the driver system. Hence, there are frequency-locked

phenomena between two subsystems. Additionally, compar-
ing Fig. 3�a� with Fig. 8, there exists a transition at the pa-
rameter 2.92. One in Fig. 3�a� is the negativeness of CLE;
the other in Fig. 8 is the transition of the frequency. We
further show the existence of 2:1 PS in the system �6� with
the parameter c=10 by the conventional Hilbert-based PS.
The phase �x1

��y1
� of signals x1 �y1� is computed after the

construction of its analytic signals �36�. Computing their 2:1
phase difference, 2�x1

−�y1
, we find that the interaction be-

tween variables x1 and y1 of the system �6� can lead to a
locking of their phases as Fig. 9�a�. The distribution of the
phase difference as Fig. 9�b� has a low uncertainty. Conse-
quently, we conclude that there exists 2:1 PS in some epochs.
This result is stronger than the one by the frequency analysis.
However, our method can provide the self-similarity between
any two time series segmented from a time series. That is,
there is correlation inside the time series of the response
system. As our result in Fig. 5, we show the self-similarity
for EMG signals. The proposed method can, hence, provide
more information about phase than the conventional SI. For
researchers who only want to know the phase-locked corre-
lation between two time series, the conventional Hilbert-
based PS has a good performance. The Hilbert-based method
completely ignores the information of amplitude but phase.
In other words, we ignore whether two segmented time series
can be totally independent or there exist some patterns be-
tween them. However, when GS and mixed-type PS coexist,
these two methods, SI- and Hilbert-based PS, cannot show
the phenomenon. The existence of GS implies the predict-
ability of the location. For the coupled system �6�, we can
simultaneously predict the two positions in the modified Lo-
renz system by the Rössler system.
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FIG. 10. For �a� ��c��, a reconstructed trajec-
tory X �Y� of a time series x1�t� �y1�t�� for the
Rössler-Lorenz system �6� is plotted with the
same parameters as setting in Fig. 1. We choose
points in a Poincaré sections of �a� ��c�� for com-
putation of the first return time plotted in �b�
��d��. Here, the two means 0.2927 and 0.5855 are
highlighted. It is obvious that there is a multiple
relation between these two average return times.
Note that c=10.
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Since the clustering feature in the spatial domain is the
key to the proposed method, we explain mechanisms for its
occurrence in the coupled system �6� with c=10 by the av-
eraged return time �ART�. The result in Sec. III A 2 was only
discussed in the nearest neighborhood; however, the ART is
going to be discussed on a Poincaré section, the section
transversally crossed by trajectories. The ART method is able
to present the averaged time of the trajectories first returning
to the Poincaré section. Let �x

m ��y
m� be the first return time of

the mth crossing of the reconstructed Rössler trajectory for xn
�for the reconstructed Lorenz trajectory of yn� through an
appropriate Poincaré section in Fig. 10�a� �Fig. 10�b��. Given
the differences �x

m+1−�x
m ��y

m+1−�y
m� as in Fig. 10�b� �Fig.

10�d��, we computed the ART ��x
m+1−�x

m� ���y
m+1−�y

m�� whose
value is 0.5855 s �0.2927 s�, where �·� means averaging over
m. Note that, for the reconstructed Lorenz trajectory of yn,
we only averaged the first return time in between 0.2 and 0.4,
and there still exists the period 0.5855 of the averaged return
time. The averaged return time for the reconstructed trajec-
tory of yn spends almost twice as much time as that of xn

returning to their own Poincaré section; i.e., 2��x
m+1−�x

m�
���y

m+1−�y
m�. In other words, as points in the Rössler system

return to their Poincaré section once, the corresponding
points in the coupled system return to themselves once or
twice. Besides, it follows from the frequency analysis that a

time series xn generated by the Rössler system in Eq. �6� has
a natural frequency 	 ��1.7084 Hz�. By the formula T
=1 /	, where T is the period and 	 is frequency, the period
of the time series xn is about 0.5855 s. The period of the
corresponding time series yn with respect to the frequency
3.4167 �1.7084� is about 0.2927 s �0.5855 s�. The ratios of
periods between two subsystems are almost multiple
�0.5855 /0.2927�2, 0.5855 /0.5855=1�. Hence, there are
coherent results for both the ART in the spatial domain and
frequency analysis in the temporal domain.

Depending on the numerical definition of Eq. �4�, we give
a mathematical presentation of the functional relationship for
the coupled system �6� with c=10. The functional relation-
ship is denoted by y�n�=F(x�n�), where x�n�
= (x1�n� , . . . ,x1�n+ �dx−1��x�) and y�n�= (y1�n� , . . . ,y1�n
+ �dy −1��y�). Here 2�y =�x as in Sec. III A 1. Hence, y�n
+kTy�=F(x�n+kTy�)=F(x�n+ k

2Tx�) because 2Ty =Tx. Herein,
a period T is the reciprocal of its frequency 	. By the result
of analyzing the conventional SI between x1�ti� and y1�ti�, the
variation rate of the mean distance exceeds statistically zero
as c=10. In other words, the neighbors y�n+hTy� of y�n
+kTy� can predict the neighbors x�n+ h

2Tx� of x�n+ k
2Tx�,

where h�R and y�n+hTy� are contained in the actual neigh-
bors of y�n+kTy�. By the first return time analysis, a point in
a Poincaré section almost takes Tx time back to the same
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based approach.
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section. If a point x�n� takes h
2Tx time, where h is odd, it

travels just half the route of a period. If a point x�n� takes
h
2Tx time, where h is even, it travels just a route with a full
period. So x�n+

h1

2 Tx
� and x�n+

h2

2 Tx
� with odd numbers h1

and even numbers h2 should be in different clusters. Hence,
for this case, the ASI can describe more information about a
phase-locked phenomenon than the conventional SI.

The clustering behavior became unpredictable because of
different averaged return times. The Gaussian mixture mod-
els with the MDL criterion were therefore used to adaptively
cluster points. The models have been proposed for quite
some time as a basis for cluster analysis. In our proposed
process, the distribution of the nearest neighbors was as-
sumed as a mixture of Gaussian distributions, each represent-
ing a different cluster. To our knowledge, the model-based
classification can match the clinical classification of a bio-
medical data set much more closely than the single-link or
standard k means. Hence, the model-based classification was
applied to distinguish different neighbors. In addition to the
MDL criterion, there are three more criteria: the Akaike in-
formation criterion �37�, the Bayesian information criterion
�28�, and cross-validation �38�. Since the maximized log-
likelihood could be registered as a goodness-of-fit measure
for all four methods, the optimal number of clusters can be
decided accordingly.

The present work has great potential in many applica-
tions. The globally ASI can be ideally used to model the
functional relation between systems as a many-to-one con-
tinuous function. When the globally ASI is larger than the
conventional SI �i.e., ASI with only one cluster�, it implies
that a many-to-one continuous function exists and the
coupled system possesses GS with PS. In the case of the
one-to-one continuous function, only the GS would be de-
tectable. Our method is also capable of detecting that the
coupled system is GS with mixed types of PS �e.g., coexist-
ence of GS and PS� in which the clustering behaviors are
irregular.

V. CONCLUSIONS

The current study has established the ASI which effec-
tively quantifies GS with n :m PS between two subsystems

with clustering behaviors within the response system, where
at least one of n and m is 1. The salient features of this
method included �i� trajectory reconstruction for transform-
ing a temporal domain into a spatial domain, �ii� cluster
analysis for dynamically detecting the clustering characteris-
tic in the response space, and �iii� surrogate data for reducing
the effect of noise, bandpass filtering, and its complexity.
When applied to the unidirectionally coupled Rössler-Lorenz
system, the globally ASI could detect the nonlinear interde-
pendence more sensitively than the SI after implementation
of cluster analysis with the Gaussian mixture model and
MDL criterion. Furthermore, when applied to the data of the
self-paced finger movement, the globally ASI could success-
fully detect GS with 1:2 and 1:3 PS between the physiologi-
cal �i.e., sEMG to MEG� signals. Thus, the proposed adap-
tive method provides a promising tool to probe the
synchronization characteristics in nonlinear dynamics and
brain science.
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APPENDIX: THE FLOW CHART OF ANALYSIS

The flow chart of detecting GS with 1:m PS between two
time series is illustrated in Fig. 11. In step 1, we describe
both how to reconstruct a trajectory of a time series and how
to decide the k nearest neighbors of points. In step 2, we
describe the flow chart of computing the globally ASI with-
out surrogates. In step 3 �step 4�, we show the flow chart of
computing the globally ASI with univariate �bivariate� surro-
gates.
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